Maldi and Metabolomics

Genetic alterations or early environmental challenges typically lead to many neurobiological changes. While it is certainly possible to predict some of these, the complexity of the brain and the neuronal connectivity make it necessary to use special techniques that go beyond the standard “hypothesis-driven” approach. Over the last decades the research field has developed numerous so-called “hypothesis-free” techniques, such as genome wide association studies, RNA sequencing and proteomics. Together with our collaborators Drs Rob Keijzers and Bill Jordan, we are using two of these techniques: Maldi and metabolomics. Maldi (Matrix Assisted Laser… Read More

Near Infrared Spectroscopy

One of the major technological breakthroughs in human neuroscience research has been the development of functional magnetic resonance imaging (fMRI). This technique, for the first time allowed us to measure changes in blood oxygen levels (and by extension brain activity) while subjects were performing a specific task. Over the years, this technique has been improved and refined especially in spatial, which can now be as small as 1 mm. While structural MRI has also been developed for rats and mice, fMRI is technically very challenging, mainly because of the risk of movement… Read More

Heart Rate Variability

One of the main challenges in behavioural neuroscience is to improve the translational validity of the animal models for the human condition. The lack of success in the development of new drugs for psychiatric disorders has led many pharmaceutical companies to abandon research in the area completely, despite the substantial need for better drugs for mental disorders. To improve the chances of identifying more successful psychoactive drugs, we are evaluating the usefulness of heart rate variability (HRV). HRV refers to the beat-to-beat variation in individual heartbeats. Studies in healthy volunteers have found… Read More

The analysis of ultrasonic vocalizations

Although rats do make audible sounds, most communication, particularly between rats takes places at a frequency beyond our human hearing. These so-called ultrasonic vocalizations (USVs) in rats range from roughly 22 to 90 kHz. Traditionally, USV research has shown that rat calls in the 20 – 25 kHz range are typically associated with negative affect, while calls in the 40 – 90 kHz range are typically associated with positive affect. Rat pups, when separated from their mothers usually make calls in the 30 – 45 kHz range. While this subdivision in three… Read More